MSc Information Security thesis abstract

speak

Security managers in companies lack a clear process to implement security controls in order to ensure compliance with various regulations and standards.

Interviews with experts show that security managers may take ISO 27001 standard as a framework and then make a decision on any particular implementation based on their experience.

Such implementations run the risk of creating collisions with users’ business activities and result in violation of security policies in the company, because they introduce friction with the business process. Users try to avoid such friction. It is important, however, to differentiate between malicious non-compliance and cases when security policy obstructs business processes leading to workarounds.

This piece of research presents example scenarios of such clashes and explores the root causes of events of non-compliance.

A model is developed that supports security managers’ decision-making process and incorporates users into the system in a way that mitigates the negative impact on users’ behaviour of security policy.

A combination of quantitative and qualitative methods is applied to research the perception of information security by both users and security managers: the survey was created and 64 participants were surveyed to gain an insight into users’ perspective of implemented information security controls; semi-structured interviews with five experts were conducted, who have seven or more years of experience in the information security field and currently hold managerial positions.

The study illustrates that company can be formally compliant but still inefficient in performing its revenue-generating activities. Moreover, there is a mismatch between users’ and security managers’ perception: security managers think that they are already paying attention to the users, but 23% users complain that security activities negatively affect their performance.

The presented model is validated by information security experts and provides clear guidance to security managers in organisations as to implementation of security controls. The majority of experts liked the approach, but said that it needs to be tried with real-world processes.

Modelling conflicts between information security compliance and behaviour

With this post I’m starting a series of articles on information security compliance and behaviour issues.

It is important for security managers to understand that their decisions affect the company as a whole.  However, there are instances when business activities and security tasks are not synchronised. For example, the New York Times website was unavailable for several hours on the 14th of August 2013. While a malicious attack was initially suspected, the problem was caused simply by scheduled system maintenance procedure.
On the one hand, violation of compliance requirements may result in significant losses for an organisation. On the other hand, poorly implemented security policies may obstruct users’ goal-driven behaviour and may result in non-compliance.

Security managers and users may share different views on security activities. In order to ensure that users in the organisation will comply with security policies, the security manager should broaden his perspective and make users a part of the system.

Lack of clear guidance in this decision-making process may result in the situation in which a company is formally compliant with the standard but users perform their core business activities inefficiently and/or are forced to violate poorly implemented security policies.

Cloud Computing Security – A brief overview of Threats, Vulnerabilities, and Countermeasures

Threats

In 2013 the Cloud Security Alliance released a report, which identifies and describes 9 significant threats to Cloud computing [3]. This report was conducted through a survey of experts and intends to help companies in their Risk assessment. The Cloud Security Alliance (CSA) is one of the first nonprofit organizations that have tried to set up standards for best practices for secure cloud computing. They further try to offer guidance and security education.

The identified threats are listed in accordance to their severity:

1. Data Breaches: Data breaches occur when sensitive information of a company falls into the hands of its competitors and cloud computing introduces new ways of attack [1,3].

2. Data Loss: Data Loss can happen in several ways and is a terrifying thought for businesses. Accidental deletions by the CSP or physical catastrophes are examples of possible ways of loosing data in the cloud. Another example is if the consumer encrypts the data before uploading it to the cloud but then looses the encryption key [1, 3].

3. Account or Service Traffic Hijacking: There are different ways an account can be hijacked such as social engineering. If an attacker is able to get access to an account he can access, for example, sensitive data, manipulate it, and also redirect transactions [3, 9].

4. Insecure APIs: Services provided by CSPs can be accessed through APIs and therefore the security of the cloud depends also highly on the security of these APIs.  Weak credentials, insufficient authorization checks and insufficient input-data validation are some problems that can arise with APIs [3, 9].

5. Denial of Service (DoS): Cloud System Resources are being overused by an attacker, which prevent users from being able to access their data or applications [1, 3].

6. Malicious insiders: This threat refers to the fraud, damage or theft of information and misuse of IT resources caused from inside the CSP [3, 9].

7. Abuse of Nefarious Use:  CSP are known to have weak registration processes and therefore can give easy access to attackers. Possible impacts include decoding and cracking of passwords and executing malicious commands [1, 3].

8. Insufficient due diligence: Some companies do not have the right resources and understanding of the cloud environment to correctly evaluate the risk associated with responsibilities. Some implications can be contractual issues and operational and architectural issues [3].

9. Shared Technology Vulnerabilities: This threat can occur in all service models and refers to the fact that a single vulnerability could compromise the entire provides cloud [3].

Vulnerabilities in the Cloud

Vulnerability is the second factor companies have to consider when assessing the risk of migrating data to the cloud. Even though many types of vulnerabilities exist, when identifying them it is important to make sure they are cloud specific.

What makes a Vulnerability cloud specific?

According to the research conducted in [5] there are several criteria, which can be met by a vulnerability to make it cloud specific.

  • Virtualization, service- oriented architecture and cryptography are examples of core technologies of cloud computing. A Vulnerability is cloud specific if it is frequent and fundamental to these core technologies.
  • Elasticity, resource pooling and pay-as-you go mode are example on the other hand of cloud characteristics [4]. A Vulnerability is cloud specific if its root cause is in one of those characteristics.
  • Another criteria that makes a vulnerability cloud specific is if it hard to implement existing security controls to cloud innovations.
  • The last criteria they mention is that it has to be frequent in established state-of-the-art cloud services

Knowing what makes a vulnerability cloud specific one can then identify vulnerabilities in the cloud. The paper [1] has identified in total 7 major vulnerabilities of cloud computing:

1 Session Riding and Hijacking: This vulnerability is related to web applications weaknesses. Session Hijacking is unauthorized access is gained through a valid session key [8]. Session riding on the other hand is when the attacker sends commands to a web application by tricking the user open an email or to visit a malicious website [1].

2. Reliability and Availability of Service: This vulnerability takes into consideration that cloud computing is not perfect. More and more service are built on top of cloud computing infrastructures. In case of a failure a large amount of Internet based services and applications may stop working. The paper [1] give the example of an event in 2008 when Amazon’s Web Service cloud storage infrastructure went down for several hours. This caused data loss and access issues.

3. Insecure Cryptography: One of the fundamental problems in cryptography is the random generation of numbers. If numbers used in cryptographic algorithm are not truly random flaws can be found easily. The Virtual machines used on the cloud do not have enough sources of entropy and are therefore susceptible to attacks [1].

4. Data Protection and Portability: This vulnerability addresses the questions of what happens with the sensitive data in case of contract termination or in case the CSP goes out of business [1].

5. Virtual Machine Escape: This vulnerability refers to the possibility of breaking out of a virtual machine and interacting with the host operating system. Given that many virtual machine can exist in the same location increases the attack surface for the attacker [1].

6 Vendor Lock-in: The vulnerability lies in companies being dependent on the CSP they have initially chosen. Inconsistencies between CSPs and lack of standards make it hard for companies to switch providers [1].

7. Internet Dependency: Cloud Computing is very much dependent on the Internet. Users usually access services through web browsers. Some critical operation such as Healthcare systems needs to be up and running 24 hours. The question arises in situations where the Internet is not reliable [1].

Countermeasures

 Having identified the risks of cloud computing it is then possible to assess which data or applications should be migrated and how much security is needed. Further, it is possible to come up with countermeasures or safeguards to mitigate these risks. Countermeasures may come in various forms such as policies, procedures, software configurations, and hardware devices [4].

For the threats and vulnerabilities mentioned in this report there exist countermeasures that can help mitigate the risk. Papers such as [6], [3], and [9] give possible solutions to these risks. Some of them are for example Identity and access management guidance for the threat of account or service hijacking [6]. The CSA has issued a report to provide a list of best practices such as separation of duties and identity management [2]. For the threat of data leakage for example the main countermeasure is encryption [8, 6].

Even though there are many countermeasures that have been identified a good practice for companies is to have a good Service Level agreement (SLA) with the CSP. SLAs are the only legal agreement between client and service provider and should cover aspects such as security policies and their implantation and also should discuss legal issues in case of misuse of services [7]. The CSA further has come up with a framework that can assist in looking at the aspects of Governance, Risk and Compliance (GRC) in a company’s IT policy when adopting a new solution. Their framework assists in assessing Clouds provided by CSPs against established best practices and standards.

We have looked at Threats and Vulnerabilities and come to conclude that there are still several issues to cloud computing that need to be solved. Therefore, it is only understandable that companies still view cloud computing skeptical and do not adopt it as an option without consideration. Companies themselves should ensure through service level agreements that they get the security they need. Further we are able to see through organizations such as the Cloud Security Alliance that there are efforts in trying to create standards and help companies in choosing the right provider.

References

[1]       Bamiah, Mervat Adib, and Sarfraz Nawaz Brohi. “Seven Deadly Threats and Vulnerabilities in Cloud Computing.” International Journal of Advanced Engineering Sciences and Technologies (IJAEST) (2011).

[2]       Brunette, Glenn, and Rich Mogull. “Security guidance for critical areas of focus in cloud computing v2. 1.” Cloud Security Alliance (2009): 1-76.

[3]       Cloud Security Alliance, “The Notorious Nine Cloud Computing Top Threats in 2013”, Cloud Security Alliance, 2013, [Online]

[4]       Dahbur, Kamal, Bassil Mohammad, and Ahmad Bisher Tarakji. “A survey of risks, threats and vulnerabilities in cloud computing.” In Proceedings of the 2011 International Conference on Intelligent Semantic Web-Services and Applications, p. 12. ACM, 2011.

[5]       Grobauer, Bernd, Tobias Walloschek, and Elmar Stocker. “Understanding cloud computing vulnerabilities.” Security & Privacy, IEEE 9, no. 2 (2011): 50-57.

[6]       Hashizume, Keiko, David G. Rosado, Eduardo Fernández-Medina, and Eduardo B. Fernandez. “An analysis of security issues for cloud computing.” Journal of Internet Services and Applications 4, no. 1 (2013): 5.

[7]       Kandukuri, Balachandra Reddy, V. Ramakrishna Paturi, and Atanu Rakshit. “Cloud security issues.” In Services Computing, 2009. SCC’09. IEEE International Conference on, pp. 517-520. IEEE, 2009.

[8]       Munir, Kashif, and Sellapan Palaniappan. “Secure Cloud Architecture.” Advanced Computing: An International Journal (ACIJ), 4 (1), 9-22. (2013).

[9]       Yu, Ting-ting, and Ying-Guo Zhu. “Research on Cloud Computing and Security.” In Distributed Computing and Applications to Business, Engineering & Science (DCABES), 2012 11th International Symposium on, pp. 314-316. IEEE, 2012.

Risk management and compliance tools

Citicus

Citicus MOCA – iPhone/iPad tool that enables you to complete a criticality assessment in minutes, anywhere, anytime, using a highly-respected technique that has been successfully applied to many thousands of assessments over the last decade.  In essence, this highlights the maximum credible loss to your organisation if the worst happens to an asset (e.g. theft, fire, flood, malfunction).

Control Systems Security Program (CSSP) – free tool that provides users with a systematic and repeatable approach for assessing the security posture of their cyber systems and networks. It includes both high-level and detailed questions related to all industrial control and IT systems.

If you struggle to comply with HIPAA, the NIST HIPAA Security Toolkit Application can help you better understand the requirements of the HIPAA Security Rule, implement those requirements, and assess implementations in operational environment.

Information security e-learning

The Internet gives us unlimited opportunities to educate ourselves. Here I want to share with you some free resources, which can help you understand information security concepts better.

1. For those of you who want to familiarize yourself with ISO 27001 standard  I recommend free e-learning course

“The purpose of this course is to enable information security practitioners to successfully implement an ISO 27001 compatible information security management system in their respective organizations. This course is made freely available to interested candidates and is modeled on ISO 27001 Lead Implementer courses.” (c) ISQ

2. Designing and Executing Information Security Strategies course provides you with opportunities to integrate and apply your information security knowledge. Following the case-study approach, you will be introduced to current, real-world cases developed and presented by the practitioner community. You will design and execute information assurance strategies to solve these cases. A term-long capstone project leads you through an actual consulting engagement with a local organisation  adding experience to your resume before you even complete the program.

3. Stanford University provides free online cryptography courses.

Basic

“This course explains the inner workings of cryptographic primitives and how to correctly use them. Students will learn how to reason about the security of cryptographic constructions and how to apply this knowledge to real-world applications. The course begins with a detailed discussion of how two parties who have a shared secret key can communicate securely when a powerful adversary eavesdrops and tampers with traffic. We will examine many deployed protocols and analyze mistakes in existing systems. The second half of the course discusses public-key techniques that let two or more parties generate a shared secret key. We will cover the relevant number theory and discuss public-key encryption and basic key-exchange. Throughout the course students will be exposed to many exciting open problems in the field.” (c) Dan Boneh

Advanced

“The course begins with constructions for digital signatures and their applications.   We will then discuss protocols for user authentication and zero-knowledge protocols.    Next we will turn to privacy applications of cryptography supporting anonymous credentials and private database lookup.  We will conclude with more advanced topics including multi-party computation and elliptic curve cryptography” (c) Dan Boneh

4. One-hour seminar by Xeno Kovah (Mitre) on rootkits highlights the few weaknesses in detection methodologies and many weaknesses in tools

5. Using buffer overflows

– Understanding the Stack – The beginning of this video explain Intel x86 function-call conventions when C code is compile

– Buffer Overflow Exploitation Megaprimer for Linux video series

6. Series of videos introducing wireless networking and the application of penetration testing tools to WLANs